Accelerator Mass Spectroscopy with the ATLAS Superconducting Linear Accelerator: An Ultrasensitive Forensic Tool:

Track Material to Source by Unique Isotopic Ratio Measurement Identify reprocessing Activity

Richard C. Pardo Argonne National Laboratory

ATLAS Facility floor plan emphasizing the portions used in Accelerator Mass Spectroscopy Experiments

Features of Accelerator Mass Spectroscopy (AMS)

- Measure isotopic concentrations in small samples
 - Sample size: 1 to 10 mg
- Excellent isotopic and isobaric discrimination
 - Ultrahigh material sensitivity
 - Detectable concentrations as low as 5X10⁻¹⁷
- At ATLAS, AMS has been developed for the isotopes ³He, ³⁹Ar, ⁴¹Ca, ⁵⁹Ni, ⁶⁰Fe, ²³⁶U and ²⁴⁴Pu.
- Development of ⁸⁵Kr AMS is planned for the near future. ⁸⁵Kr AMS may be used to identify nuclear reprocessing activity.
- The technique is also suitable for detection of ultra-small quantities of actinide elements, that are by-products of nuclear weapons production and power industries.
- Actinide AMS may help identify the source of confiscated materials by comparing isotopic ratios in samples.

Radioisotopes for which AMS has been developed or is being developed at ATLAS		
Isotope	t _{1/2} (yr)	Isotopic Abundance
		Detection Limit
³⁹ Ar	2.68×10^2	5×10^{-17}
⁴¹ Ca	1.04×10^5	1.0 X 10 ⁻¹⁵
⁵⁹ Ni	9.2 X 10 ⁴	1.0 X 10 ⁻¹³
⁶⁰ Fe	1.50×10^6	1.0 X 10 ⁻¹³
⁸⁵ Kr	10.8×10^{1}	Under Development
^{236}U	2.3×10^7	1.0 X 10 ⁻¹²
²⁴⁴ Pu	8.1×10^{7}	10 ⁸ total atoms

Position vs Energy Loss Spectrum in gas-filled magnettic spectrometer detector showing unique identification of ³⁹Ar from dominant ³⁹K stable background.

Identification of ²³⁶U in focal plane detector of the ATLAS Fragment Mass Analyzer. Spectrum of Position (M/Q) vs Energy in Focal Plane Detector.